Мастьянова Татьяна Михайловна

аспирант Минский государственный лингвистический университет г. Минск, Беларусь

Tatyana Mastyanova

PhD Student Minsk State Linguistic University Minsk, Belarus tanya mast mail@mail.ru

АРХИТЕКТУРА ЧАТ-БОТА КАК ЦИФРОВОГО ПОМОЩНИКА В ОБУЧЕНИИ СТУДЕНТОВ ОБЩЕНИЮ НА ИНОСТРАННОМ ЯЗЫКЕ

В статье рассматривается обучающий чат-бот как средство реализации дистанционной образовательной технологии в рамках проекта «Цифровой университет»; выдвигаются методические требования к его разработке; обосновывается архитектура чат-бота, предназначенного для обучения студентов иноязычному общению; предъявляются его структурные компоненты как интеграция модулей интеллектуальной диалоговой системы и логически взаимосвязанных блоков (информационно-содержательного, обработки входных/выходных данных, фиксации результатов обучения пользователя, мотивационного, блока адаптации учебного материала под уровень владения иностранным языком пользователя и коррекционного).

Ключевые слова: чат-бот; дистанционные образовательные технологии; диалоговая система; архитектура; обучение общению; английский язык.

THE ARCHITECTURE OF A CHATBOT AS A DIGITAL ASSISTANT FOR TEACHING STUDENTS TO COMMUNICATE IN A FOREIGN LANGUAGE

The article considers the educational chat-bot as a means of implementing distance education technology within the framework of the "Digital University" project; methodological requirements for its development are put forward; the architecture of the chat-bot designed to teach students foreign language communication is substantiated; its structural components are presented as an integration of modules of the intellectual dialogue system and logically interrelated blocks (information and content, processing of input/output data, recording of the user's learning results, motivating block, block of adapting training material to the user's foreign language proficiency level and correctional block).

K e y w o r d s: chat-bot; distance education technologies; dialogue system; architecture; communication training; English.

В рамках реализации «Концепции цифровой трансформации процессов в системе образования Республики Беларусь на 2019–2025 годы» активно разрабатываются дистанционные образовательные технологии (далее – ДОТ), которые предполагают создание условий для самостоятельной учебно-

познавательной деятельности студентов в процессе овладения ими учебным материалом. В условиях цифровой образовательной среды современные ДОТ должны обеспечить возможность персонализации обучения студентов иностранным языкам и построения их индивидуальной образовательной траектории, что предусматривает организацию (само)контроля учебных достижений обучающихся и их предметных результатов [1, с. 87]. Одним из средств обеспечения обозначенных методических требований может стать обучающий чат-бот.

Исходя из анализа определений понятия «чат-бот» [2, с. 46; 3, с. 124; 4, с. 11; 5; 6, с. 6], мы будем понимать обучающий чат-бот (далее — ОЧБ) как диалоговую систему, созданную на основе технологий искусственного интеллекта и машинного обучения, которая обеспечивает развитие у студентов умений иноязычного общения. Иноязычное общение в чат-боте осуществляется посредством голосового и/или текстового режима в виде поочередной передачи инициативы между пользователем и технической системой.

ОЧБ, предназначенный для развития у студентов умений иноязычного общения, должен отвечать следующим требованиям: обеспечивать автоматическую генерацию персонализированного контента и практических заданий; осуществлять контроль выполнения заданий; ранжировать ответы студентов в зависимости от их уровня владения иноязычным общением; предоставлять мгновенную обратную связь по результатам прохождения учебного материала. Представляется целесообразным использовать ОЧБ в качестве средства реализации ДОТ в рамках проекта МГЛУ «Цифровой университет».

Разработка ОЧБ требует тщательного структурирования информации, разделения ее на логические блоки. Как указывалось выше, ОЧБ представляет собой диалоговую систему, базовую архитектуру которой составляют 3 модуля: модуль понимания естественного языка (Natural Language Understanding – NLU), модуль диалогового менеджера (Dialogue Manager – DM), модуль генерации естественного языка (Natural Language Generation – NLG) [6, с. 6; 7]. Модуль понимания естественного языка обрабатывает и преобразовывает входящий текстовой/голосовой запрос пользователя в структурированное представление [6, с. 6]. Под диалоговым менеджером понимается «центральная составляющая диалоговых систем, которая коорднирует деятельность других компонентов» [8, с. 238]. В задачи диалогового менеджера входит контроль всей архитектуры и структуры беседы, обработка речевых актов, формулирование ответов чат-бота пользователю. Модуль генерации естественного языка отвечает за формирование ответной реплики на основе информации, полученной от диалогового менеджера [6, с. 7]. Исходя из способа ввода и вывода данных, базовая архитектура может быть дополнена модулем распознавания речи (automatic speech recognizer – ASR) и модулем синтеза речи (text-to-speech – TTS) [8, с. 237–238; 9, р. 38–39].

Диалоговая система, создаваемая на основе технологий искусственного интеллекта и машинного обучения, предусматривает обработку естественного языка, поиск и извлечение информации из текстов, распознавание и синтез речи, а также генерацию текстов [7]. Соответственно, в ее структуре должна

быть предусмотрена *база знаний* (Knowledge Base – KB), которая предназначена для организации и хранения данных, используемых диалоговой системой для генерации ответов. Например, в ОЧБ в качестве данных могут храниться дидактические сценарии бесед, лингвистические базы данных (отобранные языковые и речевые единицы, соотносимые с требованиями учебной программы), база данных с обучающими текстами, набор мотивационных сообщений, а также алгоритмы работы чат-бота и т. д. Непрерывное совершенствование базы знаний ОЧБ, которые опираются на возможности машинного обучения и анализа предыдущих бесед, позволит расширить базы данных новыми языковыми и речевыми единицами /текстами. Взаимодействие диалогового менеджера с базой знаний даст возможность определить языковые и/или речевые единицы, наиболее приемлемые для генерации инициирующей/ответной реплики ОЧБ пользователю.

Представленные модули диалоговой системы и база знаний составляют внутреннюю структуру ОЧБ. Непосредственное взаимодействие между технической системой и пользователем обеспечивается внешней оболочкой или интерфейсом ОЧБ.

Разработка ОЧБ в целях развития у студентов умений иноязычного общения требует учета архитектуры интеллектуальной диалоговой системы (далее – ИДС) и выше обозначенных методических требований. На основе анализа функционально-связанных блоков адаптированного дидактического обеспечения [10, с. 6–8] и персонализированной адаптивной обучающей системы [11, л. 163–235] мы предлагаем интегрировать в архитектуру ИДС следующие дополнительные блоки, обеспечивающие адаптацию и персонализацию обучения студентов общению на иностранном языке: информационно-содержательный, обработки входных/выходных данных, фиксации результатов обучения пользователя, мотивационный, блок адаптации учебного материала под уровень владения иностранным языком пользователя и коррекционный блок. Рассмотрим данные блоки более подробно.

Информационно-содержательный блок ОЧБ включает информацию о содержании учебной дисциплины (тематика, количество часов и бесед по теме, требования к результатам освоения учебной дисциплины), которая соответствует учебной программе и образовательному стандарту по специальности студентов.

Блок обработки входных/выходных данных включает в себя элементы диалоговой системы. Модуль понимания естественного языка анализирует семантическое представление входного текста. На основе данного представления посредством языковой модели определяется уровень владения студентом иностранным языком в соответствии с критериями СЕГК [12]. На основе установленного уровня владения студентом иностранным языком модуль диалогового менеджера ОЧБ осуществляет запрос в лингвистические базы данных для выбора языковых и речевых единиц, затем передает отобранные единицы в модуль генерации естественного языка для формирования и предъявления студенту инициирующей/ответной реплики ОЧБ.

В блоке фиксации результатов обучения пользователя формируется его персональный профиль. В профиле должна содержаться информация об

уровне владения студентом иностранным языком, количестве пройденных им тем/бесед, допущенных языковых и/или речевых ошибок, а также информация о результатах выполненных упражнений из коррекционного блока.

В блоке адаптации учебного материала осуществляется адаптация и предъявление студенту последующего образовательного контента с опорой на выявленный уровень владения иностранным языком. В данном блоке для студента генерируются и предоставляются персональные рекомендации по дальнейшему освоению учебного материала.

Мотивационный блок предназначен для обеспечения обратной связи путем генерации для студента мотивационных сообщений по результатам прохождения учебного материала.

Коррекционный блок содержит базу данных с дополнительными языковыми и условно-речевыми упражнениями, предназначенными для совершенствования лексического и грамматического материала и совершенствования аудитивных навыков. Упражнения из данного блока предъявляются студенту в результате анализа ОЧБ информации о допущенных пользователем языковых и/или речевых ошибках. После выполнения студентом соответствующих упражнений ему предлагается повторить беседу по теме, используя аналогичные реплики.

Архитектуру ОЧБ для развития у студентов умений иноязычного общения можно представить в виде рис. 1.

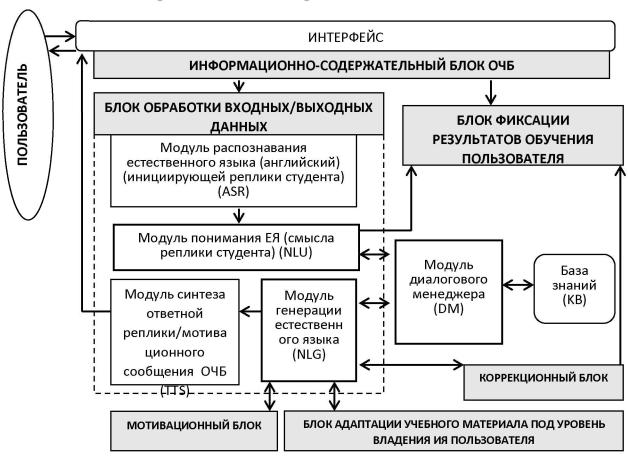


Рис 1. Архитектура обучающего чат-бота для развития у студентов умений иноязычного общения

Последовательность работы компонентов ОЧБ, направленного на адаптацию и персонализацию образовательного контента, можно продемонстрировать на примере принципиального алгоритма генерации обучающей беседы в оболочке чат-бота (рис. 2).

A	Инициация студентом БЕСЕДЫ n-1
В	Фиксация инициирующей реплики студента
С	Ответная реплика ОЧБ с последующей уточняющей репликой к
	студенту
D	Ответная реплика студента с допущенной языковой/речевой ошибкой
E1	Распознавание смысла ответной реплики студента
E2	Определение уровня владения студента иностранным языком
F	Определение и фиксация допущенной ошибки
G	Генерация ОЧБ мотивирующего сообщения студенту
H1	Подбор диалоговым менеджером языковых и речевых единиц в
	лингвистической базе данных, соответствующих уровню владения
	студента иностранным языком
Н2	Извлечение диалоговым менеджером соответствующих языковых и
	речевых единиц из лингвистической базы данных
I	Генерация и синтез адаптированной инициирующей реплики ОЧБ
J	Ответная реплика студента с допущенной языковой/речевой ошибкой
K	Подбор дополнительных заданий на совершенствование языковых
	навыков/развитие речевых умений
L	Выполнение студентом предложенных упражнений
M	Повторное прохождение БЕСЕДЫ n-2 с аналогичными репликами

Рис. 2. Принципиальный алгоритм генерации обучающей беседы в оболочке чат-бота

Таким образом, разработанная архитектура ОЧБ предназначена для создания интеллектуальной диалоговой системы, направленной на развитие у студентов умений иноязычного общения. Архитектура ОЧБ представляет собой интеграцию структурных модулей интеллектуальной диалоговой системы и логически взаимосвязанных блоков: информационно-содержательного, блока обработки входных/выходных данных, фиксации результатов обучения пользователя, мотивационного блока, блока адаптации учебного материала под уровень владения иностранным языком пользователя и коррекционного блока. Внедрение технологий искусственного интеллекта в архитектуру ОЧБ позволит обеспечить взаимодействие представленных структурных компонентов чат-бота, самоконтроль овладения студентом образовательным контентом, даст возможность автоматизировать генерацию персональных рекомендаций по развитию умений иноязычного общения на английском языке.

ЛИТЕРАТУРА

- 1. Соловьёва О. А. Лингводидактическая многомерность цифрового образовательного пространства в дистанционном обучении иностранным языкам // Вестник МГЛУ. Образование и педагогические науки. 2024. № 1 (850). С. 86–92.
- 2. Сысоев П. В., Филатов Е. М., Сорокин Д. О. Искусственный интеллект в обучении иностранному языку: чат-боты в развитии умений иноязычного речевого взаимодействия обучающихся // Иностранные языки в школе. 2023. № 3. С. 45–54.
- 3. Копытова А. В. Лингвопрагматические особенности ситуации общения «человек чат-бот» // Человек: Образ и сущность. Гуманитарные аспекты. 2023. № 2 (54). С. 123–139.
- 4. Авраменко А. П. Лингводидактический потенциал чат-ботов и виртуальных помощников как средств распознавания речи технологиями искусственного интеллекта // МНКО. 2022. № 3 (94). С. 9–11.
- 5. Что такое чат-бот? [Электронный ресурс]. URL: https://vc.ru/marketing/979196-chto-takoe-chat-bot (дата обращения: 28.06.2024).
- 6. Юсупов И. Ф. Контекстный диалоговый агент : автореф. ... канд. техн. наук : 05.13.17. М.,2020. 30 с.
- 7. Технологии искусственного интеллекта [Электронный ресурс]. URL: https://novikov.ua/технологии-искусственного-интелекта/ (дата обращения: 28.06.2024).
- 8. Прикладная и компьютерная лингвистика: коллективная монография. 2-е издание. М.: Ленанд, 2017. 320 с.
- 9. Berg M. Modelling of Natural Dialogues in the Context of Speech-based Information and Control Systems. PhD thesis, University of Kiel. 2014. 250 p.
- 10. Непрерывное профессиональное образование: теория и практика: материалы XI Международной научно-практической конференции, Новосибирск, 07–08 апреля 2022 года. Новосибирск: Сибирский государственный университет путей сообщения, 2022. 569 с.
- 11. Вайнштейн Ю. В. Педагогическое проектирование персонализированного адаптированного предметного обучения студентов вуза в условиях цифровизации: дис. ... докт. пед. наук: 13.00.02. Красноярск, 2021. 425 л.
- 12. North B., Piccardo E. Common European framework of reference for languages: learning, teaching, assessment : Council of Europe Publishing, 2020. 274 p.